客服热线
400-655-2828
商贸连锁行业是近代产业革命所带来的经济高速发展的产物。通过分散化销售、集中化经营,整个商贸连锁行业的经济迅速增长。日前,商务部印发了《智慧商店建设技术指南(试行)》的通知,针对商贸连锁行业中的连锁商店建设进行指导,提高商店的智能化程度,给顾客带来更好、更优的服务。博亚体育将通过AIoT的技术,助力商店智能化的建设。
制造企业肩负着我国从制造大国向制造强国转变的重任,国家对制造型企业的数字化转型和绿色低碳发展可谓是不遗余力,陆续颁布一些列政策支持企业发展,如《中国制造2025》,工业互联网,十四五行动规划等。博亚体育将通过AIoT的手段助力各制造企业进行数字化转型及绿色低碳发展。
基础教育信息化建设进入实质性阶段,虽经过多年的建设,但目前学校的信息化建设依然存在壁垒,如理念、设备、模式上没有彻底摆脱传统束缚,没能真正的让信息化建设落地。为了推进信息化教育变革,以信息化带动教学现代化。博亚体育将信息技术深度融入教育教学全过程中,以育人为中心,创建智能教学环境。
随着教育信息化、现代化的相关政策推出,利用现代技术提升校园安全防控能力、改革教学理念及模式已成为数字化校园的新方向。博亚体育以视频等物联感知为基础,结合大数据、人工智能等多种技术手段,为学校带来覆盖校园安全、教学、信息化服务、整体态势展现等多维度的完整解决方案,对校园运行管理模式赋能,提升学校综合管理服务能力。
长江十年禁渔、长江流域重点水域禁捕退捕,是推进长江流域生态文明建设、开展生态环境治理和促进长江经济带绿色发展的关键举措,农业农村部制定印发《“十四五”全国渔业发展规划》,对“十四五”全国渔业发展作出总体安排,推进渔业高质量发展,统筹推动渔业现代化建设,力争到2035年基本实现渔业现代化。
林业是生态建设的主体,在保障经济和社会发展的工作中有着不可或缺的作用。森林火灾突发性强、破坏性大、处置救助十分困难,是当今世界最为严重的自然灾害和突发性公共危机事件之一。十四五期间,我们要共建森林草原防灭火一体化体系,健全预防体系,提高预警能力,加强早期火情处理,全面提升森林火灾综合防控能力。
“乡村兴则国家兴”。建设数字乡村既是乡村振兴的战略方向,也是建设数字中国的重要内容。通过数字乡村智慧党建,乡村数字化治理,生态坏境数字化助力乡村产业兴旺、生态宜居、乡风文明、治理有效、生活富裕。
深入贯彻落实总书记关于治水工作的重要论述和指示批示精神,着眼国民经济和社会发展“十四五”规划和二〇三五年远景目标,积极践行全面深化水利改革的决策部署。2022年,基本建立全面覆盖、上下贯通的水利行业监督体系,天地空一体化感知网全面部署;2025年,基本实现水利行业监督的常态化、规范化和专业化,推动2035年水利智能应用全面迈入新时代,实现现代化的水治理体系和水治理能力。
安防视频监控从上世纪90年代至今,获得了快速发展。随着IP技术在视频监控领域的大规模应用,视频监控规模从几十路发展到成千上万路。在此背景下,如何有效提高视频监控的应用效率成为视频监控建设的重要问题。因此,智能视频监控成为视频监控建设的发展方向。
在以往的视频监控项目中,智能视频分析技术得到越来越多的应用。但是真正成功的应用确非常少,即使在一些相对应用成功的案例中,智能视频分析往往只是作为补充手段,而且以拌线、禁区等简单算法居多。例如卡口应用中,也只是作为感应线圈的后备技术,在感应线圈故障的时候采用拌线识别抓拍车牌。
出现这种呼声与实际严重差距的原因,主要总结为两点:准确率和成本。这两者相互依赖,密不可分。
就准确率来说,目前智能分析算法的误报率和漏报率显然是无法令人满意的。这主要有几个原因,首先在我看来目前国内很少有真正属于视频监控自身的视频分析算法。目前使用的大部分算法都是按照实验室单纯环境总结图像规律而来的。然而安防视频监控主要是面向保护人和财产的,所以视频来源主要是路口、广场、建筑物出入口、通道等相对复杂的环境。这些环境往往图像变化率大,受灯光环境干扰多。以人脸识别为例,目前的主流算法对人脸图像有非常严格的要求,取景各个角度、距离、瞳孔之间的像素都要在一个很小的范围内,反之则无法识别。
怎么解决准确率的问题,关键是样本,智能分析算法的本质是比对,和样本的比对。由于视频监控的环境复杂性,导致很难得到具有统一规律的样本。不同应用场景,具有不同的样本规则。所以要解决准确率,智能分析算法就要具备自我学习,样本自我采集的能力。在不同的场景中,智能分析出现误报漏报,操作员对智能分析服务器反馈误报漏报数据,搜集特殊样本,从而帮助智能分析服务器在以后的相似场景下,能计算准确分析结果。
另外阻碍智能分析发展的就是成本。虽然目前有很多厂商的编码器、摄像机带有简单的智能分析,但是目前大部分相对复杂的智能分析还是以单独服务器分析的方式应用。服务器收取到视频流,还原为YUV、RGB等数据再做样本比对,然后再编码输出。所以一台服务器要解码、分析、再编码,性能成为很大的瓶颈。
导致这种情况的原因是视频分析算法从九十年代末至今,实际并没有算法上的根本进步,发展的只是运算能力的提高,也就是计算机技术的发展。同样以车牌识别为例,国内大部分厂商还是在别人的算法基础上不停的优化。在基础没有得到优化的情况下,外围的优化只能说效果了了。
对于计算性能和算法性能一定的情况下,视频监控产品是否还能有效提高智能分析的效率?答案是一定的,软件架构。我认为,云和格的思想在软件架构的应用可以有效的提高智能分析的效率,降低成本。云是这两年最火的概念,核心思想是共享,格是前几年在网络领域得到发展,核心思想是协同计算。视频智能分析主要是计算图像的变化量和对比度,很多数据要在前端、服务器和客户端反复计算,导致了计算量的浪费,试想如果把前端编码计算变化量共享给智能分析服务器,数据对比的计算量由服务器和多个客户端协同计算,就能大大降低服务器的计算量,从而大大提高智能分析的效率,降低智能分析应用的成本。
我相信,在有效技术手段下,提高智能分析准确率,降低建设成本,智能视频分析一定能在视频监控领域得到快速的应用和发展。